

Error Detection

and

Correction

10.

The Hamming distance between two

words is the number of differences

between corresponding bits.

Note

10.

Let us find the Hamming distance between two pairs of

words.

1. The Hamming distance d(000, 011) is 2 because

Example 10.4

2. The Hamming distance d(10101, 11110) is 3 because

10.

The minimum Hamming distance is the

smallest Hamming distance between

 all possible pairs in a set of words.

Note

10.

Find the minimum Hamming distance of the coding

scheme in Table 10.1.

Solution

We first find all Hamming distances.

Example 10.5

The dmin in this case is 2.

10.

Find the minimum Hamming distance of the coding

scheme in Table 10.2.

Solution

We first find all the Hamming distances.

The dmin in this case is 3.

Example 10.6

10.

To guarantee the detection of up to s

errors in all cases, the minimum

Hamming distance in a block

code must be dmin = s + 1.

Note

10.

10-3 LINEAR BLOCK CODES

Almost all block codes used today belong to a subset

called linear block codes. A linear block code is a code

in which the exclusive OR (addition modulo-2) of two

valid codewords creates another valid codeword.

Minimum Distance for Linear Block Codes

Some Linear Block Codes

Topics discussed in this section:

10.

In a linear block code, the exclusive OR

(XOR) of any two valid codewords

creates another valid codeword.

Note

10.

A simple parity-check code is a

single-bit error-detecting

code in which

n = k + 1 with dmin = 2.

Even parity (ensures that a codeword

has an even number of 1’s) and odd

parity (ensures that there are an odd

number of 1’s in the codeword)

Note

10.

Table Simple parity-check code C(5, 4)

10.

Figure Encoder and decoder for simple parity-check code

10.

Let us look at some transmission scenarios. Assume the

sender sends the dataword 1011. The codeword created

from this dataword is 10111, which is sent to the receiver.

We examine five cases:

1. No error occurs; the received codeword is 10111. The

 syndrome is 0. The dataword 1011 is created.

2. One single-bit error changes a1 . The received

 codeword is 10011. The syndrome is 1. No dataword

 is created.

3. One single-bit error changes r0 . The received codeword

 is 10110. The syndrome is 1. No dataword is created.

Example

10.

4. An error changes r0 and a second error changes a3 .

 The received codeword is 00110. The syndrome is 0.

 The dataword 0011 is created at the receiver. Note that

 here the dataword is wrongly created due to the

 syndrome value.

5. Three bits—a3, a2, and a1—are changed by errors.

 The received codeword is 01011. The syndrome is 1.

 The dataword is not created. This shows that the simple

 parity check, guaranteed to detect one single error, can

 also find any odd number of errors.

Example (continued)

10.

A simple parity-check code can detect an

odd number of errors.

Note

10.

Figure Two-dimensional parity-check code

10.

Figure Two-dimensional parity-check code

10.

Figure Two-dimensional parity-check code

10.

Table Hamming code C(7, 4) - n=7, k = 4

10.

Modulo 2 arithmetic:

r0 = a2 + a1 + a0

r1 = a3 + a2 + a1

r2 = a1 + a0 + a3

Calculating the parity bits at the transmitter

:

Calculating the syndrome at the receiver:

s0 = b2 + b1 + b0

s1 = b3 + b2 + b1

s2 = b1 + b0 + b3

10.

Figure The structure of the encoder and decoder for a Hamming code

Burst Errors
 Burst errors are very common, in particular in

wireless environments where a fade will
affect a group of bits in transit. The length of
the burst is dependent on the duration of the
fade.

 One way to counter burst errors, is to break
up a transmission into shorter words and
create a block (one word per row), then have
a parity check per word.

 The words are then sent column by column.
When a burst error occurs, it will affect 1 bit
in several words as the transmission is read
back into the block format and each word is
checked individually.

10.

 CYCLIC CODES

Cyclic codes are special linear block codes with one

extra property. In a cyclic code, if a codeword is

cyclically shifted (rotated), the result is another

codeword.

10.

Table A CRC code with C(7, 4)

10.

Figure CRC encoder and decoder

10.

Figure Division in CRC encoder

10.

Figure Division in the CRC decoder for two cases

10.

Figure Hardwired design of the divisor in CRC

10.

Figure Simulation of division in CRC encoder

10.

Figure The CRC encoder design using shift registers

10.

Figure General design of encoder and decoder of a CRC code

Using Polynomials

 We can use a polynomial to represent a
binary word.

 Each bit from right to left is mapped onto a
power term.

 The rightmost bit represents the “0” power
term. The bit next to it the “1” power term,
etc.

 If the bit is of value zero, the power term is
deleted from the expression.

10.

Figure A polynomial to represent a binary word

10.

Figure CRC division using polynomials

10.

The divisor in a cyclic code is normally

called the generator polynomial

or simply the generator.

Note

10.

In a cyclic code,

If s(x) ≠ 0, one or more bits is corrupted.

If s(x) = 0, either

 a. No bit is corrupted. or

 b. Some bits are corrupted, but the

 decoder failed to detect them.

Note

10.

Table Standard polynomials

10.

 CHECKSUM

The last error detection method we discuss here is

called the checksum. The checksum is used in the

Internet by several protocols although not at the data

link layer. However, we briefly discuss it here to

complete our discussion on error checking

Idea

One’s Complement

Internet Checksum

Topics discussed in this section:

10.

Figure Example

10.

Sender site:
1. The message is divided into 16-bit words.

2. The value of the checksum word is set to 0.

3. All words including the checksum are

 added using one’s complement addition.

4. The sum is complemented and becomes the

 checksum.

5. The checksum is sent with the data.

Note

10.

Receiver site:
1. The message (including checksum) is

 divided into 16-bit words.

2. All words are added using one’s

 complement addition.

3. The sum is complemented and becomes the

 new checksum.

4. If the value of checksum is 0, the message

 is accepted; otherwise, it is rejected.

Note

